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Abstract—We design a soft-in soft-out (SISO) decision feed-
back equalizer (DFE) that performs better than its linear
counterpart in turbo equalizer (TE) setting. Unlike previously
developed SISO-DFEs, the present DFE scheme relies on extrinsic
information formulation that directly takes into account the error
propagation effect. With this new approach, both error rate
simulation and the extrinsic information transfer (EXIT) chart
analysis indicate that the proposed SISO-DFE is superior to the
well-known SISO linear equalizer (LE). This result is in contrast
with the general understanding today that the error propagation
effect of the DFE degrades the overall TE performance below
that of the TE based on a LE. We also describe a new
extrinsic information combining strategy involving the outputs
of two DFEs running in opposite directions, that explores error
correlation between the two sets of DFE outputs. When this
method is combined with the new DFE extrinsic information
formulation, the resulting “bidirectional" turbo-DFE achieves
excellent performance-complexity tradeoffs compared to the TE
based on the BCJR algorithm or on the LE. Unlike turbo LE or
turbo DFE, the turbo BiDFE’s performance does not degrade
significantly as the feedforward and feedback filter taps are
constrained to be time-invariant.

Index Terms—Intersymbol interference, equalization, decision
feedback equalizer, turbo equalization, iterative methods.

I. INTRODUCTION

INTERSYMBOL interference (ISI) arises as the transmitted
symbols overlaps with one another in high speed digital

communication. Powerful modern equalization methods are
based on the turbo equalization principle established in [1],
wherein a soft-in soft-out (SISO) equalizer (or detector) and
a SISO error-correction decoder exchange soft information in
an iterative fashion until reliable decisions are generated. It
has been shown in [1] that even for some heavy ISI channels
the detrimental effect of ISI disappears with this approach.

The detector or the equalizer portion of a turbo equalizer
(TE) system often investigated is based on the well-known
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [2]. This algo-
rithm exactly computes the a posteriori probability (APP)
of the transmitted signal symbols considering the channel
response and the a priori information of the transmitted
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symbols and, as such, can be viewed as an optimum SISO
equalizer. However, the computational complexity of this
algorithm grows exponentially as a function of the channel
length and the symbol alphabet set size.

The high computational complexity of the BCJR-based
equalizer has motivated considerable research on numerous
suboptimal but low complexity equalization schemes. A no-
table development along this direction is the well-known SISO
linear equalizer (LE) of [3]. Another possibility, which was
also evaluated in [3], is the SISO decision feedback equalizer
(DFE). In the classical, non-turbo setting (i.e., no iterative
exchange of soft information between the equalizer and the
decoder), it has long been known that the DFE almost always
outperforms the LE, despite the fact that the DFE typically
suffers from error propagation. This is because when ISI
is severe with the channel response showing nulls or deep
valleys within the Nyquist band, the LE is subject to large
noise enhancement. The work of [3], however, shows that
when hard decisions are fed through the feedback filter (to
reduce complexity), SISO-DFE performs considerably worse
than SISO-LE, presumably due to error propagation.

In classical DFE setting, many techniques have been inves-
tigated to mitigate error propagation [4], [5], [6]. Recently, it
has been shown [7], [8], [9] that conducting both normal and
time-reversed equalization of the received data sequence with
two DFEs running in opposite directions and combining two
DFE outputs is very effective in reducing error propagation
and improving bit error rate (BER) performance. This “bi-
directional" DFE (called BiDFE) algorithm takes advantage
of the different decision error and noise distributions at the
outputs of the forward and time-reversed DFEs [7], [8].

The contribution of this paper is two-fold. One is that this
paper readdresses the DFE design issue in the turbo equalizer
environment and shows that just as in classical non-turbo
setting, the DFE outperforms the LE, if extrinsic information
is reformulated in a way that combats error propagation
more effectively. The second contribution is a specific DFE
extrinsic information combining strategy applied to a BiDFE
that suppresses statistical correlation between the outputs of
two opposite direction DFEs. We show that the resulting
turbo BiDFE performance approaches the performance of the
BCJR-based turbo equalizer in a fairly severe ISI environment,
easily outperforming the turbo equalizer based on the SISO-
LE of [3]. Remarkably, the performance of a time-invariant
version of the BiDFE, a lower-complexity method that does
not require tap-weight updating as a function of time, also
consistently is better than the SISO-LE scheme of [3] based
on a time-varying linear filter. There also exist feedback
equalization techniques that utilize soft decisions to reduce
error propagation [6], [9], [10], [11] but we focus on hard-
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decision feedback in this paper, as the feedback finite-impulse-
response filter complexity is greatly reduced when feedback
decisions are constrained to take hard values.

The remainder of the paper is organized as follows. In
Section II, a brief statement of the problem is given. In
Section III, we give a quick review of the SISO equalizer
design method established in [3] and then provide a new
formulation of the extrinsic information of DFE taking into
account the error propagation effect. We also provide the
mean-squared-error analysis of the infinite-length BiDFE in
Section IV. The iterative BiDFE algorithm is introduced with
the extrinsic information combiner of the normal forward
and time-reversed DFE outputs in Section V. In Section VI,
numerical results and analysis are given. Finally, we draw
conclusions in Section VII.

II. SYSTEM MODEL

We assume that the receiver knows the discrete-time base-
band channel response accurately. While the methods dis-
cussed are general, our presentation will be based on binary
symbols with 𝑃𝑥 ≜ E(𝑥2

𝑛) = 1, 𝑥𝑛 ∈ {±1}, as well as real-
valued ISI channel coefficients and noise samples. Although
𝑥𝑛 typically represents a coded bit sequence, our analysis will
assume that it is equiprobable and independent and identically
distributed (i.i.d.). Given the transmitted bit sequence {𝑥𝑘},
the channel output at time 𝑛 is

𝑟𝑛 =

𝐿ℎ−1∑
𝑘=0

ℎ𝑘𝑥𝑛−𝑘 + 𝑤𝑛 (1)

where 𝑤𝑛 is additive white Gaussian noise (AWGN) with
variance 𝑁0 and {ℎ𝑘} is the channel impulse response with
length 𝐿ℎ.

In turbo equalization, the equalizer computes the a posteri-
ori log-likelihood ratio (LLR) of 𝑥𝑛,

𝐿(𝑥𝑛) ≜ ln
Pr(𝑥𝑛 = +1 ∣ r𝑛)
Pr(𝑥𝑛 = −1 ∣ r𝑛)

where r𝑛 is the received sample block utilized for LLR estima-
tion for 𝑥𝑛. Note that this computation requires the knowledge
of the a priori probabilities of all input bits affecting r𝑛. Since
these a priori probabilities are not available, they are all set
to 1/2 initially and then, as the turbo iteration ensues, to the
estimated probability values based on the extrinsic information
generated and passed back by the outer decoder.

The equalizer then generates its own extrinsic information
by subtracting the effect of the probability estimate passed
down for the current bit. Write this estimated a priori LLR
passed down from the decoder as

𝐿𝑎(𝑥𝑛) ≜ ln
Pr(𝑥𝑛 = +1)

Pr(𝑥𝑛 = −1)

with an understanding that the probabilities in the expression
are in reality just estimates.

Then, the equalizer’s extrinsic LLR for 𝑥𝑛 to be passed to
the error-correction code decoder is given by

𝐿𝑒(𝑥𝑛) ≜ 𝐿(𝑥𝑛)− 𝐿𝑎(𝑥𝑛).

This equation suggests first computing 𝐿(𝑥𝑛) based on the a
priori probabilities of all input bits including 𝑥𝑛 and then

simply subtracting 𝐿𝑎(𝑥𝑛) to generate the extrinsic LLR
𝐿𝑒(𝑥𝑛). An alternative way of generating 𝐿𝑒(𝑥𝑛) is to set
𝐿𝑎(𝑥𝑛) = 0 while computing 𝐿(𝑥𝑛), i.e., suppress the effect
of 𝐿𝑎(𝑥𝑛) in the calculation of 𝐿(𝑥𝑛):

𝐿𝑒(𝑥𝑛) = 𝐿(𝑥𝑛)∣𝐿𝑎(𝑥𝑛)=0.

The techniques discussed in this paper actually use the second
method.

III. DERIVATION OF MODIFIED ITERATIVE DFE
ALGORITHM

In this section we first briefly review the results of [3] re-
lated to the SISO-DFE to provide necessary background while
establishing notation. We then show a new way of computing
extrinsic information so as to suppress error propagation and
improve performance.

A. Review of Existing Extrinsic LLR Mapping

The work of [3] has established an effective strategy of
utilizing the a priori information estimates from the outer
decoder in calculating the equalizer tap coefficients. The gist
of the approach in [3] is a clever tweaking of the classical
minimum-mean-squared-error (MMSE) estimation principle
where the “mean" of the input symbols are constructed using
the available a priori information estimates and utilized in the
linear estimator weight computation. Both the LE and the DFE
can be designed in this way, but we shall focus on the DFE
here. Based on the above principle and suppressing the effect
of the a priori probability estimate on the current bit 𝑥𝑛 (i.e.,
E(𝑥𝑛) = 0) in an effort to extract the extrinsic information,
the MMSE feedforward filter taps (a total of 𝐿𝑐 + 1) and the
feedback filter taps (a total of 𝐿𝑑 = 𝐿ℎ − 1) at time 𝑛 are
derived respectively as:

c𝑛 ≜
[
𝑐{𝑛,0}, 𝑐{𝑛,+1}, . . . , 𝑐{𝑛,𝐿𝑐}

]𝑇
=

{
HΣ𝑛H

𝑇 + (1− 𝑧𝑛)ss
𝑇 +𝑁0I

}−1
s (2)

d𝑛 ≜
[
𝑑{𝑛,−𝐿𝑑}, 𝑑{𝑛,−𝐿𝑑+1}, . . . , 𝑑{𝑛,−1}

]𝑇
= MH𝑇 c𝑛 (3)

where H is a channel convolution matrix defined at the
top of the next page, and Σ𝑛 depends on E(𝑥𝑖), 𝑖 =
𝑛, 𝑛 + 1, ..., 𝑛 + 𝐿𝑐, computed from the decoder out-
put as E(𝑥𝑖) = tanh(𝐿𝑎(𝑥𝑖)/2). Specifically, Σ𝑛 ≜
Diag(01×𝐿𝑑

, 𝑧𝑛, 𝑧𝑛+1, . . . , 𝑧𝑛+𝐿𝑐) with 𝑧𝑖 ≜ 1 − [E(𝑥𝑖)]
2.

Adding the term (1 − 𝑧𝑛)ss
𝑇 in (2) has the same effect

of suppressing E(𝑥𝑛) to zero in HΣ𝑛H
𝑇 . The remaining

vector and matrix are defined as s ≜ H[01×𝐿𝑑
, 1,01×𝐿𝑐 ]

𝑇

and M ≜ [I𝐿𝑑×𝐿𝑑
,0𝐿𝑑×(𝐿𝑐+1)].

The equalizer output is obtained as

𝑦𝑛 = c𝑇𝑛 ⋅ (r𝑛 −Hx̄𝑛 + E(𝑥𝑛)s) (4)

where the received vector is defined as r𝑛 ≜
[𝑟𝑛, 𝑟𝑛+1, . . . , 𝑟𝑛+𝐿𝑐 ]

𝑇 and the composite vector of the
causal symbol decisions and the anticausal symbols’ mean as
x̄𝑛 ≜ [�̂�𝑛−𝐿𝑑

, . . . , �̂�𝑛−1,E(𝑥𝑛), . . . ,E(𝑥𝑛+𝐿𝑐)]
𝑇 where �̂�𝑖 is

the available decision for 𝑥𝑖 based on the a posteriori LLR
of 𝑥𝑖, i.e., if 𝐿(𝑥𝑖) = 𝐿𝑎(𝑥𝑖) + 𝐿𝑒(𝑥𝑖) ≥ 0, then, �̂�𝑖 = +1;



JEONG and MOON: SOFT-IN SOFT-OUT DFE AND BI-DIRECTIONAL DFE 2731

H ≜

⎡
⎢⎢⎢⎣

ℎ𝐿ℎ−1 ℎ𝐿ℎ−2 ⋅ ⋅ ⋅ ℎ0 0 ⋅ ⋅ ⋅ 0
0 ℎ𝐿ℎ−1 ℎ𝐿ℎ−2 ⋅ ⋅ ⋅ ℎ0 0 ⋅ ⋅ ⋅ 0

. . .
. . .

. . .
0 0 ⋅ ⋅ ⋅ 0 ℎ𝐿ℎ−1 ℎ𝐿ℎ−2 ⋅ ⋅ ⋅ ℎ0

⎤
⎥⎥⎥⎦

otherwise, �̂�𝑖 = −1. The addition of the E(𝑥𝑛)s term is also
to suppress the effect of E(𝑥𝑛) in Hx̄𝑛.

Define the anticausal symbol sequence x𝑛 ≜
[𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑛+𝐿𝑐 ]

𝑇 , the causal symbol sequence
x𝑐
𝑛 ≜ [𝑥𝑛−𝐿𝑑

, 𝑥𝑛−𝐿𝑑+1, . . . , 𝑥𝑛−1]
𝑇 , and the available

decision sequence x̂𝑐
𝑛 ≜ [�̂�𝑛−𝐿𝑑

, �̂�𝑛−𝐿𝑑+1, . . . , �̂�𝑛−1]
𝑇 . Also

define the noise sequence as w𝑛 ≜ [𝑤𝑛, 𝑤𝑛+1, . . . , 𝑤𝑛+𝐿𝑐 ]
𝑇 .

Then, the combined filter output 𝑦𝑛 can be rewritten as

𝑦𝑛 = (c𝑇𝑛H1) ⋅
(
x𝑛 − E{ẋ𝑛}

)
+ d𝑇

𝑛 (x
𝑐
𝑛 − x̂𝑐

𝑛) + c𝑇𝑛w𝑛

= 𝑝{𝑛,0}𝑥𝑛 +

𝐿𝑑∑
𝑘=1

𝑑{𝑛,−𝑘}
(
𝑥𝑛−𝑘 − 𝑥𝑛−𝑘

)

+

𝐿𝑐∑
𝑘=1

𝑝{𝑛,𝑘}
(
𝑥𝑛+𝑘 − E(𝑥𝑛+𝑘)

)
+

𝐿𝑐∑
𝑘=0

𝑐{𝑛,𝑘}𝑤𝑛+𝑘

= 𝑝{𝑛,0}𝑥𝑛 + 𝑖𝑛 + 𝑣𝑛 (5)

where E{ẋ𝑛} ≜ [0,E(𝑥𝑛+1),E(𝑥𝑛+2), . . . ,E(𝑥𝑛+𝐿𝑐)]
𝑇 and

H1 is the (𝐿𝑐 + 1) × (𝐿𝑐 + 1) submatrix of H formed by
the entire rows of the columns from the (𝐿𝑑 + 1)th to the
last. Moreover, p𝑛 ≜

[
𝑝{𝑛,0}, 𝑝{𝑛,1}, . . . , 𝑝{𝑛,𝐿𝑐}

]
= c𝑇𝑛H1

and 𝑝{𝑛,0} = c𝑇𝑛 s. The error propagation caused by the
mismatched hard decision feedback is denoted as 𝑖𝑛, i.e., 𝑖𝑛 ≜∑𝐿𝑑

𝑘=1 𝑑{𝑛,−𝑘}
(
𝑥𝑛−𝑘 − �̂�𝑛−𝑘

)
and 𝑣𝑛 is the sum of noise and

the remaining ISI terms caused by the neighboring symbols:
𝑣𝑛 ≜

∑𝐿𝑐

𝑘=1 𝑝{𝑛,𝑘}
(
𝑥𝑛+𝑘 − E(𝑥𝑛+𝑘)

)
+
∑𝐿𝑐

𝑘=0 𝑐{𝑛,𝑘}𝑤𝑛+𝑘.
The variance of 𝑣𝑛 is

Var(𝑣𝑛) ≜ c𝑇𝑛Cov{r𝑛r𝑇𝑛 ∣ 𝑥𝑛 = 𝑥}c𝑛
= c𝑇𝑛 s(1− s𝑇 c𝑛). (6)

Assuming that the feedback decisions are all correct, i.e., 𝑖𝑛 =
0, and 𝑣𝑛 is AWGN, the extrinsic LLR is naturally given by

𝐿𝑒(𝑥𝑛) ≜ ln
Pr(𝑥𝑛 = +1 ∣ 𝑦𝑛)
Pr(𝑥𝑛 = −1 ∣ 𝑦𝑛)

∣∣∣∣∣
𝐿𝑎(𝑥𝑛)=0

= ln
Pr(𝑦𝑛 ∣ 𝑥𝑛 = +1)Pr(𝑥𝑛 = +1)

Pr(𝑦𝑛 ∣ 𝑥𝑛 = −1)Pr(𝑥𝑛 = −1)

∣∣∣∣∣
𝐿𝑎(𝑥𝑛)=0

= ln
Pr(𝑦𝑛 ∣ 𝑥𝑛 = +1)

Pr(𝑦𝑛 ∣ 𝑥𝑛 = −1)

= −
∣∣𝑦𝑛 − 𝑝{𝑛,0}

∣∣2
2Var(𝑣𝑛)

+

∣∣𝑦𝑛 + 𝑝{𝑛,0}
∣∣2

2Var(𝑣𝑛)

=
2𝑝{𝑛,0}𝑦𝑛
Var(𝑣𝑛)

. (7)

Notice that in generating 𝑦𝑛, 𝐿𝑎(𝑥𝑛) was already suppressed
to zero.

A glossary of frequently used symbols is given below. Time-
varying quantities are augmented with time index 𝑛 as the
subscript.

c𝑛 DFE feedforward filter coefficients of length 𝐿𝑐 + 1

d𝑛 DFE feedback filter coefficients of length 𝐿𝑑

H channel convolution matrix

M [I𝐿𝑑×𝐿𝑑
,0𝐿𝑑×(𝐿𝑐+1)]

s H[01×𝐿𝑑
, 1, 01×𝐿𝑐 ]

𝑇

p𝑛 c𝑇𝑛H1 where H1 is a submatrix of H

r𝑛 received sample vector

x̄𝑛 vector of causal decisions and anticausal’s mean

w𝑛 noise sample vector

x𝑛 transmitted anticausal symbol vector

x𝑐
𝑛 transmitted causal symbol vector

x̂𝑐
𝑛 estimated causal symbol vector

y𝑐
𝑛 equalized causal sample vector

e𝑐{𝑛,𝑗} possible causal error sequence

Σ𝑛 covariance matrix of transmitted anticausal symbols

Σ́c
𝑛 covariance matrix of estimated causal symbols

𝑥𝑛 transmitted symbol

𝑤𝑛 channel noise

𝑃𝑥 average power of 𝑥𝑛

𝑁0 variance of 𝑤𝑛

{ℎ𝑘} ISI channel response of length 𝐿ℎ

𝑟𝑛 received channel output

𝑦𝑛 equalized observation

𝑖𝑛 error due to mismatched past decisions

𝑣𝑛 noise plus error due to pre-cursor ISI

𝑝{𝑛,0} weight on 𝑥𝑛 in 𝑦𝑛

𝐿𝑎(𝑥𝑛) a priori LLR of 𝑥𝑛

𝐿(𝑥𝑛) a posteriori LLR of 𝑥𝑛

𝐿𝑒(𝑥𝑛) extrinsic LLR of 𝑥𝑛

𝑧𝑛 variance of 𝑥𝑛

𝑧𝑛 variance of 𝑥𝑛 estimated via a posteriori LLR

𝜌𝑛 noise correlation coefficient between two DFEs

B. New Formulation of Extrinsic Information

While the MAP estimation of 𝑖𝑛 is equal to zero, we observe
that the chance of 𝑖𝑛 ∕= 0 is relatively high for severe ISI chan-
nels. Our strategy is to estimate 𝑖𝑛 and utilize the statistical
parameters associated with this estimate in the formulation of
the extrinsic information. Since 𝑖𝑛 is to be estimated on the
basis of the observation y𝑐

𝑛 ≜ [𝑦𝑛−𝐿𝑑
, 𝑦𝑛−𝐿𝑑+1, . . . , 𝑦𝑛−1]

𝑇 ,
the mean and variance of 𝑖𝑛 can be evaluated by the a
posteriori probabilities of the causal symbols. Write

E(𝑖𝑛) ≜ E
{
d𝑇
𝑛 (x

𝑐
𝑛 − x̂𝑐

𝑛) ∣ y𝑐
𝑛

}
= d𝑇

𝑛 (tanh(𝐿(x𝑐
𝑛)/2)− x̂𝑐

𝑛) (8)

Var(𝑖𝑛) ≜ Var
{
d𝑇
𝑛 (x

𝑐
𝑛 − x̂𝑐

𝑛) ∣ y𝑐
𝑛

}
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= d𝑇
𝑛 Σ́

𝑐
𝑛d𝑛 (9)

where 𝐿(x𝑐
𝑛) = [𝐿(𝑥𝑛−𝐿𝑑

), 𝐿(𝑥𝑛−𝐿𝑑+1), . . . , 𝐿(𝑥𝑛−1)]
𝑇 ,

Σ́𝑐
𝑛 ≜ Diag (𝑧𝑛−𝐿𝑑

, 𝑧𝑛−𝐿𝑑+1, . . . , 𝑧𝑛−1), and 𝑧𝑛 = 1 −
tanh(𝐿(𝑥𝑛)/2)

2.
Now, let us consider the possible causal error sequence

e𝑐{𝑛,𝑗} ≜ x𝑐
{𝑛,𝑗} − x̂𝑐

𝑛 for 𝑗 = 1, 2, . . . , 2𝐿𝑑 , with index 𝑗
pointing to a particular binary pattern of x𝑐

𝑛. Then, we can
compute the extrinsic information for the given causal error
sequence e𝑐{𝑛,𝑗}:

𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗}) ≜ ln
Pr(𝑦𝑛 ∣ 𝑥𝑛 = +1, e𝑐{𝑛,𝑗})

Pr(𝑦𝑛 ∣ 𝑥𝑛 = −1, e𝑐{𝑛,𝑗})

=
2𝑝{𝑛,0}(𝑦𝑛 − d𝑇

𝑛e
𝑐
{𝑛,𝑗})

Var(𝑣𝑛)
. (10)

To compute the extrinsic information of 𝑥𝑛 taking into account
the probabilities of possible error sequences, we write

Pr(𝑦𝑛 ∣ 𝑥𝑛 = +1) =
2𝐿𝑑∑
𝑗=1

Pr(𝑦𝑛 ∣ 𝑥𝑛 = +1, e𝑐
{𝑛,𝑗})Pr(e

𝑐
{𝑛,𝑗})

=

2𝐿𝑑∑
𝑗=1

exp
(
𝐿𝑒(𝑥𝑛∣e𝑐

{𝑛,𝑗})
)
Pr(e𝑐

{𝑛,𝑗})

1 + exp
(
𝐿𝑒(𝑥𝑛∣e𝑐

{𝑛,𝑗})
) (11)

Pr(𝑦𝑛 ∣ 𝑥𝑛 = −1) =

2𝐿𝑑∑
𝑗=1

Pr(𝑦𝑛 ∣ 𝑥𝑛 = −1, e𝑐
{𝑛,𝑗})Pr(e

𝑐
{𝑛,𝑗})

=
2𝐿𝑑∑
𝑗=1

Pr(e𝑐
{𝑛,𝑗})

1 + exp
(
𝐿𝑒(𝑥𝑛∣e𝑐

{𝑛,𝑗})
) . (12)

Accordingly, the extrinsic information of 𝑥𝑛 considering the
distribution of 𝑖𝑛 is given as

𝐿𝑒(𝑥𝑛) = ln

⎧⎨
⎩

2𝐿𝑑∑
𝑗=1

exp
(
𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})

)
Pr(e𝑐{𝑛,𝑗})

1 + exp
(
𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})

)
⎫⎬
⎭

− ln

⎧⎨
⎩

2𝐿𝑑∑
𝑗=1

Pr(e𝑐{𝑛,𝑗})

1 + exp
(
𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})

)
⎫⎬
⎭ . (13)

In principle, the extrinsic information of (13) can be evaluated
using (10) and approximating Pr(e𝑐{𝑛,𝑗}) or Pr(e𝑐{𝑛,𝑗}∣y𝑐

𝑛) by∏𝐿𝑑

𝑘=1 Pr(𝑒{𝑛−𝑘,𝑗}∣𝑦𝑛−𝑘), which can be computed based on
the a posteriori LLRs of x𝑐

𝑛.
However, since the computational complexity of (13) in-

creases exponentially according to the length of feedback filter,
𝐿𝑑, we seek a more practical modification. A possible solution
is to apply the Bayes’ rule only for the two mutually exclusive
cases of 𝑖𝑛 = 0 and 𝑖𝑛 ∕= 0. Then,

Pr(𝑦𝑛 ∣ 𝑥𝑛 = +1) =
exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 = 0))Pr(𝑖𝑛 = 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 = 0))

+
exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 ∕= 0))Pr(𝑖𝑛 ∕= 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 ∕= 0))
(14)

Pr(𝑦𝑛 ∣ 𝑥𝑛 = −1) =
Pr(𝑖𝑛 = 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 = 0))

+
Pr(𝑖𝑛 ∕= 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 ∕= 0))
. (15)

The extrinsic information of 𝑥𝑛 for each case of 𝑖𝑛 can be
estimated as

𝐿𝑒(𝑥𝑛∣𝑖𝑛 = 0) =
2𝑝{𝑛,0}𝑦𝑛
Var(𝑣𝑛)

𝐿𝑒(𝑥𝑛∣𝑖𝑛 ∕= 0)

= ln

⎧⎨
⎩

2𝐿𝑑∑
𝑗=1,e𝑐

{𝑛,𝑗} ∕=0

exp
(
𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})

)
Pr(e𝑐{𝑛,𝑗}){

1 + exp
(
𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})

)}
Pr(𝑖𝑛 ∕= 0)

⎫⎬
⎭

− ln

⎧⎨
⎩

2𝐿𝑑∑
𝑗=1,e𝑐

{𝑛,𝑗} ∕=0

Pr(e𝑐{𝑛,𝑗}){
1 + exp

(
𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})

)}
Pr(𝑖𝑛 ∕= 0)

⎫⎬
⎭

≃ ln

⎧⎨
⎩

2𝐿𝑑∑
𝑗=1,e𝑐

{𝑛,𝑗} ∕=0

(
1

2
+

𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})
4

)
Pr(e𝑐{𝑛,𝑗})

Pr(𝑖𝑛 ∕= 0)

⎫⎬
⎭

− ln

⎧⎨
⎩

2𝐿𝑑∑
𝑗=1,e𝑐

{𝑛,𝑗} ∕=0

(
1

2
−

𝐿𝑒(𝑥𝑛∣e𝑐{𝑛,𝑗})
4

)
Pr(e𝑐{𝑛,𝑗})

Pr(𝑖𝑛 ∕= 0)

⎫⎬
⎭

= ln

{
E
𝑖𝑛

(
1

2
+

2𝑝{𝑛,0} (𝑦𝑛 − 𝑖𝑛)

4Var(𝑣𝑛)

∣∣∣∣∣𝑖𝑛 ∕= 0

)}

− ln

{
E
𝑖𝑛

(
1

2
− 2𝑝{𝑛,0} (𝑦𝑛 − 𝑖𝑛)

4Var(𝑣𝑛)

∣∣∣∣∣𝑖𝑛 ∕= 0

)}

= ln

{
1 +

𝑝{𝑛,0} (𝑦𝑛 − E(𝑖𝑛∣𝑖𝑛 ∕= 0))

Var(𝑣𝑛)

}

− ln

{
1− 𝑝{𝑛,0} (𝑦𝑛 − E(𝑖𝑛∣𝑖𝑛 ∕= 0))

Var(𝑣𝑛)

}

≃
{

2𝜑𝑛/(1− 𝜑𝑛) if 𝜑𝑛 < 0
2𝜑𝑛/(1 + 𝜑𝑛) otherwise

=
2𝜑𝑛

1 + ∣𝜑𝑛∣ (16)

where 𝜑𝑛 ≜ 𝑝{𝑛,0} (𝑦𝑛 − E(𝑖𝑛∣𝑖𝑛 ∕= 0))/Var(𝑣𝑛),
E(𝑖𝑛∣𝑖𝑛 ∕= 0) = E(𝑖𝑛)/Pr(𝑖𝑛 ∕= 0), Pr(𝑖𝑛 = 0) =∏𝐿𝑑

𝑘=1 exp(∣𝐿(𝑥𝑛−𝑘)∣)/(1 + exp(∣𝐿(𝑥𝑛−𝑘)∣)), and
Pr(𝑖𝑛 ∕= 0) = 1 − Pr(𝑖𝑛 = 0). The first approximation
is from the first order Taylor expansion at zero, i.e,
𝑒𝑥/(1 + 𝑒𝑥) ≃ 0.5 + 0.25𝑥 and 1/(1 + 𝑒𝑥) ≃ 0.5 − 0.25𝑥.
Furthermore, we also use ln {1 + 𝜑𝑛} − ln {1− 𝜑𝑛} =
ln {1 + 2𝜑𝑛/(1− 𝜑𝑛)} = − ln {1− 2𝜑𝑛/(1 + 𝜑𝑛)}
and ln(1 + 𝑥) ≃ 𝑥 in (16). In other words,
ln {1 + 2𝜑𝑛/(1− 𝜑𝑛)} ≃ 2𝜑𝑛/(1 − 𝜑𝑛) is used for
𝜑𝑛 < 0 while − ln {1− 2𝜑𝑛/(1 + 𝜑𝑛)} ≃ 2𝜑𝑛/(1 + 𝜑𝑛) is
used for 𝜑𝑛 ≥ 0.

Finally, the extrinsic information of 𝑥𝑛 is given as

𝐿𝑒(𝑥𝑛) = ln

{
exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 = 0))Pr(𝑖𝑛 = 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 = 0))

+
exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 ∕= 0))Pr(𝑖𝑛 ∕= 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 ∕= 0))

}

− ln

{
Pr(𝑖𝑛 = 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 = 0))

+
Pr(𝑖𝑛 ∕= 0)

1 + exp (𝐿𝑒(𝑥𝑛∣𝑖𝑛 ∕= 0))

}
. (17)

While this gets passed to the outer decoder as equalizer’s
extrinsic information, hard decisions that propagate down the
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feedback filter are generated by slicing 𝐿𝑒(𝑥𝑛) + 𝐿𝑎(𝑥𝑛)
where 𝐿𝑎(𝑥𝑛) is the extrinsic information from the decoder.

C. Time-Invariant Filters

As also discussed in [3], the filter tap values derived
above are time-varying and creates significant implementation
challenges. A low-complexity variation would be to simply
assume the classical (non-turbo) DFE forward and feedback
filter tap solutions as in

c ≜ [𝑐0, 𝑐+1, . . . , 𝑐𝐿𝑐 ]
𝑇

=
(
HΣH𝑇 +𝑁0I

)−1
s (18)

d ≜ [𝑑−𝐿𝑑
, 𝑑−𝐿𝑑+1, . . . , 𝑑−1]

𝑇

= MH𝑇 c, (19)

where Σ ≜ Diag(01×𝐿𝑑
,11×(𝐿𝑐+1)), but let the effect of

decoder feedback come into play through the subtraction of
Hx̄𝑛 −E(𝑥𝑛)s from the channel observation vector (see (4))
and the enhanced a posteriori LLR computation: 𝐿𝑒(𝑥𝑛) +
𝐿𝑎(𝑥𝑛) where 𝐿𝑎(𝑥𝑛) represents the decoder feedback.

By an obvious modification of (5), the equalized signal is
obtained as

𝑦𝑛 = 𝑝0𝑥𝑛 + 𝑖𝑛 + 𝑣𝑛 (20)

where 𝑝0 = c𝑇 s, 𝑖𝑛 =
∑𝐿𝑑

𝑘=1 𝑑−𝑘

(
𝑥𝑛−𝑘 − �̂�𝑛−𝑘

)
, 𝑣𝑛 =∑𝐿𝑐

𝑘=1 𝑝𝑘(𝑥𝑛+𝑘 − E(𝑥𝑛+𝑘)) +
∑𝐿𝑐

𝑘=0 𝑐𝑘𝑤𝑛+𝑘 , and p ≜
[𝑝0, 𝑝1, . . . , 𝑝𝐿𝑐 ] = c𝑇H1. The mean and variance of 𝑖𝑛 and
the noise variance of 𝑣𝑛 with the time-invariant filters are also
given by

E(𝑖𝑛) = d𝑇 (tanh(𝐿(x𝑐
𝑛)/2)− x̂𝑐

𝑛) (21)

Var(𝑖𝑛) = d𝑇 Σ́𝑐
𝑛d (22)

Var(𝑣𝑛) = c𝑇
(
HΣ𝑛H

𝑇 − 𝑧𝑛ss
𝑇 + 𝑁0I

)
c. (23)

IV. SNR ADVANTAGE OF BIDFE

The idea of BiDFE is already motivated in [7], [8] by
the fact that DFE can be performed on the reversed received
sequence using the time-reversed channel response. Here we
derive the SNR figure-of-merit for BiDFE assuming ideal
feedback in both ways and allowing infinitely long filter
lengths. We then compare the result with those of the usual,
single-sided DFE as well as the matched filter detector (i.e.,
ideal detector under zero-ISI condition). As will be seen, the
ideal BiDFE SNR is significantly better than the ideal DFE
SNR especially at high channel SNRs, further motivating a
turbo BiDFE scheme.

A. Unbiased MMSE-DFE

It is well known that the 𝐷-transforms of the feedforward
and feedback MMSE-DFE filter coefficients are, respectively
[12]:

𝑐(𝐷) =
𝑃𝑥

𝑃0𝑔∗(𝐷−∗)
, 𝑑(𝐷) = 𝑔(𝐷) (24)

where 𝑃0 is such that log𝑃0 = 1
2𝜋

∫ 𝜋

−𝜋 log𝑅𝑠𝑠(𝑒
−𝑗𝜃)𝑑𝜃 and

𝑔∗(𝐷−∗) is obtained from spectral factorization: 𝑅𝑠𝑠(𝐷) =
𝑃𝑥𝑅ℎℎ(𝐷) + 𝑁0 = 𝑃0𝑔(𝐷)𝑔∗(𝐷−∗) where 𝑅ℎℎ(𝐷) =

ℎ(𝐷)ℎ∗(𝐷−∗) and ℎ(𝐷) is the 𝐷-transform of the channel
impulse response.

The unbiased equalized outputs of the normal MMSE-DFE
in the forward direction, 𝑌𝑓 (𝐷), are given by

𝑌𝑓 (𝐷) = 𝑥(𝐷) +
𝑃0

𝑃0 −𝑁0
𝑒′𝑓 (𝐷) (25)

where

𝑒′𝑓 (𝐷)≜ 𝑁0

𝑃0

(
1− 1

𝑔∗(𝐷−∗)

)
𝑥(𝐷) +

𝑃𝑥𝑤
′(𝐷)

𝑃0𝑔∗(𝐷−∗)
(26)

with 𝑤′(𝐷) denoting a complex-valued Gaussian noise
sequence with autocorrelation function 𝑅𝑤′𝑤′(𝐷) =
𝑁0𝑅ℎℎ(𝐷). Then, the mean-squared-error (MSE) and SNR
of the unbiased normal MMSE-DFE are given by

MSE𝑈𝐷𝐹𝐸 =

(
𝑃0

𝑃0 −𝑁0

)2

E(∣𝑒′𝑓,𝑛∣2) =
𝑃𝑥𝑁0

𝑃0 −𝑁0
(27)

SNR𝑈𝐷𝐹𝐸 ≜ 𝑃𝑥

MSE𝑈𝐷𝐹𝐸
=

𝑃0 −𝑁0

𝑁0
. (28)

B. Unbiased Time-Reversed MMSE-DFE

Now, let us assume that the transmitted data sequence 𝑥𝑛

is of a finite length so that the MMSE-DFE can be performed
on the time-reversed received signals using the time-reverse
of the original channel impulse response [13]. Denoting the
time-reversed ISI channel coefficients as ℎ̃𝑛 = ℎ∗

𝐿ℎ−1−𝑛, its
D-transform is given as ℎ̃(𝐷) = 𝐷𝐿ℎ−1ℎ∗(𝐷−∗). Therefore,
the 𝐷-transform of the autocorrelation function of the time-
reversed channel is given by 𝑅ℎ̃ℎ̃(𝐷) = ℎ̃(𝐷)ℎ̃∗(𝐷−∗) =
𝑅ℎℎ(𝐷). Accordingly, the feedforward and feedback filters of
the time-reversed MMSE-DFE, denoted by 𝑐(𝐷) and 𝑑(𝐷)−1
respectively, are identical to the normal MMSE-DFE filters,
i.e.,

𝑐(𝐷) = 𝑐(𝐷) =
𝑃𝑥

𝑃0𝑔∗(𝐷−∗)
, 𝑑(𝐷) = 𝑑(𝐷) = 𝑔(𝐷).(29)

The unbiased output of the time-reversed MMSE-DFE can
be expressed similarly to the case of the normal, forward
MMSE-DFE except that the unbiased output sequence right
after the time-reversed MMSE-DFE should also be time-
reversed, in order to get the unbiased equalized output 𝑌𝑏(𝐷)
matched to the input sequence 𝑥(𝐷). Therefore,

𝑌𝑏(𝐷) = 𝑥(𝐷) +
𝑃0

𝑃0 −𝑁0
𝑒′𝑏(𝐷) (30)

where

𝑒′𝑏(𝐷)≜ 𝑁0

𝑃0

(
1− 1

𝑔(𝐷)

)
𝑥(𝐷) +

𝑃𝑥

𝑃0

(
𝑤′(𝐷)

𝑔(𝐷)

)
. (31)

Then, the MSE and SNR of the unbiased time-reversed
MMSE-DFE are given by

MSE𝑈𝑅𝐷𝐹𝐸 =

(
𝑃0

𝑃0 −𝑁0

)2

E(∣𝑒′𝑏,𝑛∣2) =
𝑃𝑥𝑁0

𝑃0 −𝑁0
(32)

SNR𝑈𝑅𝐷𝐹𝐸 ≜ 𝑃𝑥

MSE𝑈𝑅𝐷𝐹𝐸
=

𝑃0 −𝑁0

𝑁0
. (33)
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Fig. 1. Bidirectional decision feedback equalizer: infinite length.

C. Unbiased BiDFE

The structure of the BiDFE is shown in Fig. 1. If we
assume that the feedback sequence is correct, the outputs of
two unbiased DFEs are:

𝑌𝑓,𝑛 =𝑋𝑛 + 𝑉𝑓,𝑛 (34)

𝑌𝑏,𝑛 =𝑋𝑛 + 𝑉𝑏,𝑛 (35)

where 𝑉𝑓,𝑛 and 𝑉𝑏,𝑛 have D-transforms 𝑉𝑓 (𝐷) and 𝑉𝑏(𝐷) as
given by (from (25), (26), (30), and (31))

𝑉𝑓 (𝐷) =
𝑁0

𝑃0 −𝑁0

(
1− 1

𝑔∗(𝐷−∗)

)
𝑥(𝐷)

+
𝑃𝑥

𝑃0 −𝑁0

(
𝑤′(𝐷)

𝑔∗(𝐷−∗)

)
(36)

𝑉𝑏(𝐷) =
𝑁0

𝑃0 −𝑁0

(
1− 1

𝑔(𝐷)

)
𝑥(𝐷)

+
𝑃𝑥

𝑃0 −𝑁0

(
𝑤′(𝐷)

𝑔(𝐷)

)
. (37)

Assuming stationary random processes, we drop time index
𝑛 for notational simplicity and write: 𝑌𝑓 = 𝑋 +𝑉𝑓 and 𝑌𝑏 =
𝑋 + 𝑉𝑏. From (27) and (32), the variance of 𝑉𝑓 and 𝑉𝑏 are
also given as:

Var(𝑉𝑓 ) = Var(𝑉𝑏) =
𝑃𝑥𝑁0

𝑃0 −𝑁0
.

The variables 𝑉𝑓 and 𝑉𝑏 are correlated with the correlation
coefficient given by

𝜌≜ E(𝑉𝑓𝑉
∗
𝑏 )√

Var(𝑉𝑓 )Var(𝑉𝑏)

=
𝑃0 −𝑁0

𝑃𝑥𝑁0
E
[
𝑉𝑓 (𝐷)𝑉 ∗

𝑏 (𝐷
−∗)
]
0

=
𝑃𝑥

𝑁0(𝑃0 −𝑁0)
E

[(
1

𝑔∗(𝐷−∗)

)2

𝑤′(𝐷)𝑤′∗(𝐷−∗)

]
0

(38)

=
𝑃 2
0

𝑃𝑥𝑁0(𝑃0 −𝑁0)

[
{𝑐(𝐷)}2 𝑅𝑤′𝑤′(𝐷)

]
0

=
𝑃 2
0

𝑃𝑥(𝑃0 −𝑁0)

[
{𝑐(𝐷)}2 𝑅ℎℎ(𝐷)

]
0

(39)

where [𝑧(𝐷)]0 = 𝑧0 with 𝑧(𝐷) =
∑

𝑘 𝑧𝑘𝐷
𝑘. The equality in

(38) holds due to the assumption that 𝑋𝑛 is an i.i.d random
variable and the self-interference term is removed from the
expression 1− 1/𝑔∗(𝐷−∗).

Since Var(𝑉𝑓 ) = Var(𝑉𝑏), the linear MMSE combiner of
[7], [14] becomes 𝑌 = 1

2 (𝑌𝑓 + 𝑌𝑏). Naturally, the MSE and
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1−Π
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Fig. 2. Iterative equalization scheme based on BiDFE.

SNR of the unbiased BiDFE are given as

MSE𝑈𝐵𝑖𝐷𝐹𝐸 =
(1 + Re[𝜌])

2
MSE𝑈𝐷𝐹𝐸

=
(1 + Re[𝜌])𝑃𝑥𝑁0

2(𝑃0 −𝑁0)
(40)

SNR𝑈𝐵𝑖𝐷𝐹𝐸 ≜ 𝑃𝑥

MSE𝑈𝐵𝑖𝐷𝐹𝐸
=

2

(1 + Re[𝜌])
SNR𝑈𝐷𝐹𝐸

=
2(𝑃0 −𝑁0)

(1 + Re[𝜌])𝑁0
(41)

where Re[𝜌] denotes the real part of 𝜌.
Note that the infinite-length normal/time-reversed MMSE-

DFE and BiDFE analyzed here do not exploit the a priori
information of 𝑋𝑛. In other words, the feedforward and
feedback filters of DFE are derived by assuming E(𝑋𝑛) = 0
for all 𝑛, meaning that the calculated SNR performance would
reflect the non-turbo ideal-decision BiDFE performance with
time-invariant filter taps of Section III-C.

V. DERIVATION OF ITERATIVE BIDFE ALGORITHM

We now discuss an iterative BiDFE algorithm. Iterative
equalization schemes based on BiDFE are shown in Fig. 2.
Basically, the channel equalizer is a SISO equalizer which
employs the normal forward DFE, the time-reversed DFE
and an LLR combining block. The received data sequence is
equalized in both directions by the two DFEs, and the extrinsic
information from two DFEs are combined and passed to the
error correction code decoder. We show that a proper com-
bining of the two sets of extrinsic information can suppress
error propagation and noise further and generate more reliable
extrinsic information for the outer decoder.

A. Combining Extrinsic Information

Similarly to the finite-length time-varying feedforward and
feedback filter of the normal DFE at time index 𝑛, which are
previously defined as c𝑛 in (2) and d𝑛 in (3), we also define
the finite-length time-varying feedforward and feedback filter
of the time-reversed DFE at time index 𝑛 as c̃𝑛 and d̃𝑛 with
the same lengths as c𝑛 and d𝑛 respectively. Note that c̃𝑛 and
d̃𝑛 are defined in a similar way as (2) and (3) except that the
channel convolution matrix H̃ for the time-reversed channel
is given as

H̃ ≜

⎡
⎢⎢⎢⎣
ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎ𝐿ℎ−1 0 ⋅ ⋅ ⋅ 0
0 ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎ𝐿ℎ−1 0 ⋅ ⋅ ⋅ 0

. . .
. . .

. . .
0 0 ⋅ ⋅ ⋅ 0 ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎ𝐿ℎ−1

⎤
⎥⎥⎥⎦ .
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The unbiased equalizer output [12] corresponding to the
transmitted coded symbol from the the normal (forward)
and the time-reversed (backward) DFE can be represented
respectively as

𝑌𝑓,𝑛 =𝑋𝑛 + 𝐼𝑓,𝑛 + 𝑉𝑓,𝑛 (42)

𝑌𝑏,𝑛 =𝑋𝑛 + 𝐼𝑏,𝑛 + 𝑉𝑏,𝑛 (43)

where 𝑋𝑛 ≜ 𝑥𝑛, 𝑉𝑓,𝑛 ≜ 𝑣𝑓,𝑛/𝑝{𝑛,0} and 𝐼𝑓,𝑛 ≜ 𝑖𝑓,𝑛/𝑝{𝑛,0}.
Also, 𝑉𝑏,𝑛 ≜ 𝑣𝑏,𝑛/𝑝{𝑛,0} and 𝐼𝑏,𝑛 ≜ 𝑖𝑏,𝑛/𝑝{𝑛,0} where
𝑣𝑏,𝑛 and 𝑖𝑏,𝑛 are defined similarly to the normal DFE and
𝑝{𝑛,0} = c̃𝑇𝑛 s̃ where s̃ ≜ H̃[01×𝐿𝑑

, 1,01×𝐿𝑐 ]
𝑇 . For notational

simplicity, we further drop time index 𝑛 with an under-
standing that processing remains identical as 𝑛 progresses:
𝑌𝑓 = 𝑋 + 𝐼𝑓 + 𝑉𝑓 and 𝑌𝑏 = 𝑋 + 𝐼𝑏 + 𝑉𝑏.

Now, we discuss the problem of how to combine the extrin-
sic information from two DFEs. Initially, let us consider two
unbiased equalizer outputs, which are corrupted by AWGN,
corresponding to the transmitted coded symbol 𝑋 :

𝑌𝑓 =𝑋 + 𝑈𝑓

𝑌𝑏 =𝑋 + 𝑈𝑏

where the noise 𝑈𝑓 and 𝑈𝑏 are assumed to be zero mean
Gaussian random variables which are independent of the
coded data 𝑋 but correlated with each other with correlation
coefficient 𝜌.

In order to combine the extrinsic information, it is beneficial
to whiten the noise 𝑈𝑓 and 𝑈𝑏 before combining. The noise
correlation matrix R is defined as

R≜
[
Var(𝑈𝑓 ) E(𝑈𝑓𝑈𝑏)
E(𝑈𝑓𝑈𝑏) Var(𝑈𝑏)

]
=

[
𝑁𝑓 𝜌

√
𝑁𝑓𝑁𝑏

𝜌
√

𝑁𝑓𝑁𝑏 𝑁𝑏

]

where 𝑁𝑓 ≜ Var(𝑈𝑓 ) and 𝑁𝑏 ≜ Var(𝑈𝑏). Then, the
eigenvalues of the noise correlation matrix, 𝜆1 and 𝜆2, with
their corresponding normalized eigenvectors g1 and g2 are
given by

𝜆1 =
(𝑁𝑓 +𝑁𝑏) +

√
(𝑁𝑓 −𝑁𝑏)2 + 4𝜌2𝑁𝑓𝑁𝑏

2

𝜆2 =
(𝑁𝑓 +𝑁𝑏)−

√
(𝑁𝑓 −𝑁𝑏)2 + 4𝜌2𝑁𝑓𝑁𝑏

2

g1 =
1√

𝑔211 + 𝑔221

[
𝑔11
𝑔21

]
, g2 =

1√
𝑔212 + 𝑔222

[
𝑔12
𝑔22

]

where 𝑔11 = 1
2

[
(𝑁𝑓 − 𝑁𝑏) +

√
(𝑁𝑓 −𝑁𝑏)2 + 4𝜌2𝑁𝑓𝑁𝑏

]
,

𝑔12 = 1
2

[
(𝑁𝑓−𝑁𝑏)−

√
(𝑁𝑓 −𝑁𝑏)2 + 4𝜌2𝑁𝑓𝑁𝑏

]
, and 𝑔21 =

𝑔22 = 𝜌
√

𝑁𝑓𝑁𝑏. It is easy to see that the noise correlation
matrix R is non-singular unless 𝜌 = ±1. If R is non-singular,
R can be expanded as R = GΛG−1 where G ≜ [g1 g2]
and Λ ≜ Diag(𝜆1, 𝜆2). Since G is a unitary matrix, the
noise whitening matrix is A ≜ [a1 a2] = G−1 = G𝑇

where a1 ≜ [𝑎11 𝑎21]
𝑇 and a2 ≜ [𝑎12 𝑎22]

𝑇 . So, given the
equalized output vector Y ≜ [𝑌𝑓 , 𝑌𝑏]

𝑇 , the whitened vector is
Y′ ≜ [𝑌 ′

𝑓 , 𝑌
′
𝑏 ]

𝑇 = AY with the new noise correlation matrix
R′ = ARA𝑇 = Λ. Finally, the extrinsic information of 𝑋

can be expressed as

𝐿𝑒(𝑋) = ln
Pr(𝑌𝑓 , 𝑌𝑏 ∣ 𝑋 = +1)

Pr(𝑌𝑓 , 𝑌𝑏 ∣ 𝑋 = −1)

= ln
Pr(𝑌 ′

𝑓 , 𝑌
′
𝑏 ∣ 𝑋 = +1)

Pr(𝑌 ′
𝑓 , 𝑌

′
𝑏 ∣ 𝑋 = −1)

= ln
Pr(𝑌 ′

𝑓 ∣ 𝑋 = +1)

Pr(𝑌 ′
𝑓 ∣ 𝑋 = −1)

+ ln
Pr(𝑌 ′

𝑏 ∣ 𝑋 = +1)

Pr(𝑌 ′
𝑏 ∣ 𝑋 = −1)

=
2(𝑎11 + 𝑎12)𝑌

′
𝑓

𝜆1
+

2(𝑎21 + 𝑎22)𝑌
′
𝑏

𝜆2

=
2
(
𝑁𝑏 − 𝜌

√
𝑁𝑓𝑁𝑏

)
𝑌𝑓

(1− 𝜌2)𝑁𝑓𝑁𝑏
+

2
(
𝑁𝑓 − 𝜌

√
𝑁𝑓𝑁𝑏

)
𝑌𝑏

(1− 𝜌2)𝑁𝑓𝑁𝑏

=

(
𝑁𝑏 − 𝜌

√
𝑁𝑓𝑁𝑏

)
(1− 𝜌2)𝑁𝑏

𝐿𝑒,𝑓 (𝑋)

+

(
𝑁𝑓 − 𝜌

√
𝑁𝑓𝑁𝑏

)
(1− 𝜌2)𝑁𝑓

𝐿𝑒,𝑏(𝑋). (44)

For the singular noise correlation matrix R (i.e., 𝜌 = +1),
𝑁𝑓 = 𝑁𝑏 = 𝑁 and 𝑌𝑓 = 𝑌𝑏 = 𝑌 so that 𝐿𝑒,𝑓 (𝑋) =
𝐿𝑒,𝑏(𝑋). Consequently, the extrinsic information of 𝑋 be-
comes 𝐿𝑒(𝑋) = 2𝑌/𝑁 = (𝐿𝑒,𝑓 (𝑋) + 𝐿𝑒,𝑏(𝑋))/2. Note that
the mean combiner of [9], 𝐿𝑒(𝑋) = (𝐿𝑒,𝑓 (𝑋)+𝐿𝑒,𝑏(𝑋))/2,
can be considered as the proposed combiner with 𝜌 = +1.
If 𝜌 = −1, 𝑈𝑓 = −𝑈𝑏 and we can cancel out the noise
perfectly by averaging the outputs: (𝑌𝑓 +𝑌𝑏)/2. The extrinsic
information of 𝑋 in this case is 𝐿𝑒(𝑋) = +∞ when
(𝑌𝑓 +𝑌𝑏)/2 ≥ 0 while 𝐿𝑒(𝑋) = −∞ when (𝑌𝑓 +𝑌𝑏)/2 < 0.

B. Reducing the Combiner Sensitivity to the Estimation Error

Let us consider the effect of errors in estimating 𝜌 on
extrinsic information. Write 𝜌 = 𝜌+𝜀 where 𝜀 is the estimation
error. Then, the sensitivity of the combiner in (44) to the
estimation error can be defined as

S(𝜌)≜
∣∣∣∣∂𝐿𝑒(𝑋)

∂𝜌

∣∣∣∣
=

∣∣∣∣
(
2𝜌𝑁𝑏 − (1 + 𝜌2)

√
𝑁𝑓𝑁𝑏

)
(1− 𝜌2)2 𝑁𝑏

𝐿𝑒,𝑓 (𝑋)

+

(
2𝜌𝑁𝑓 − (1 + 𝜌2)

√
𝑁𝑓𝑁𝑏

)
(1− 𝜌2)2 𝑁𝑓

𝐿𝑒,𝑏(𝑋)

∣∣∣∣
which approaches infinity as 𝜌 → ±1. This means that
the combiner of (44) is unfortunately very sensitive to the
correlation estimator error, as the magnitude of the correlation
becomes large.

The sensitivity of the combiner can be reduced if we assume
that the variance of 𝑈𝑓 and 𝑈𝑏 are the same, i.e., 𝑁𝑓 = 𝑁𝑏.
This assumption is reasonable when the same feedforward and
feedback filter length is used in both DFEs. Then, from (44),
the combined extrinsic information of 𝑋 for non-singular R
is simply given as

𝐿𝑒(𝑋) =
1

(1 + 𝜌)

(
𝐿𝑒,𝑓(𝑋) + 𝐿𝑒,𝑏(𝑋)

)
(45)

with the sensitivity to the correlation estimation error

S(𝜌) =

∣∣∣∣ 1

(1 + 𝜌)2

(
𝐿𝑒,𝑓(𝑋) + 𝐿𝑒,𝑏(𝑋)

)∣∣∣∣ .
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Although the sensitivity of this combiner to the estimation
error also goes to infinity as 𝜌 → −1, it shows more robustness
as 𝜌 → +1 since lim𝜌→+1 S(𝜌) = ∣(𝐿𝑒,𝑓 (𝑋) + 𝐿𝑒,𝑏(𝑋))/4∣.

C. Application to the BiDFE Algorithm

In this paper, although the composite noise 𝐼𝑓,𝑛+𝑉𝑓,𝑛 and
𝐼𝑏,𝑛 +𝑉𝑏,𝑛 are not Gaussian, we exploit the combiner of (45)
in order to produce the combined extrinsic information to be
passed to the convolutional decoder. The noise correlation
coefficient between 𝐼𝑓,𝑛 + 𝑉𝑓,𝑛 and 𝐼𝑏,𝑛 + 𝑉𝑏,𝑛 is naturally
defined as

𝜌𝑛 ≜ E {(𝐼𝑓,𝑛 − E(𝐼𝑓,𝑛) + 𝑉𝑓,𝑛) (𝐼𝑏,𝑛 − E(𝐼𝑏,𝑛) + 𝑉𝑏,𝑛)}√
(Var(𝐼𝑓,𝑛) + Var(𝑉𝑓,𝑛)) (Var(𝐼𝑏,𝑛) + Var(𝑉𝑏,𝑛))

.

Unfortunately, it is difficult to compute the correlation
coefficient analytically in the presence of decision feedback
errors. However, assuming that the noise is stationary, we
have 𝜌𝑛 = 𝜌 and the correlation coefficient can be estimated
through time-averaging such as (47) where the summations
are over some reasonably large finite window. Note that the
hard decisions for the transmitted symbols in normal and time-
reversed DFEs might be different; in estimating the correlation
coefficient, we only consider those noise samples for which
�̂�𝑓,𝑛 and �̂�𝑏,𝑛 are identical.

Let us summarize our LLR combining method: 1) The
extrinsic information 𝐿𝑒,𝑓 (𝑋𝑛) and 𝐿𝑒,𝑏(𝑋𝑛) for 𝑛 =
1, 2, . . . , 𝐿 are acquired according to (17) in the normal and
time-reversed MMSE-DFE settings. 2) Estimate the noise cor-
relation coefficient, 𝜌, between 𝐼𝑓,𝑛 +𝑉𝑓,𝑛 and 𝐼𝑏,𝑛 +𝑉𝑏,𝑛 by
(47). 3) Generate the combined extrinsic information 𝐿𝑒(𝑋𝑛)
according to (45) with 𝜌𝑛 = 𝜌.

D. Correlation Analysis Under Ideal Feedback

We provide correlation analysis in the following. The
analysis will allow validation of (47) in different scenarios.
The observation of how the simulated correlation coefficient
(47) converges to the analytically computed one under the
assumptions of ideal feedback and perfect a priori information
will also provide useful insights into the iterative behaviour
of the proposed turbo BiDFE.

First of all, the noise variance of 𝑉𝑓,𝑛 and 𝑉𝑏,𝑛 from the
time-varying filters are:

Var(𝑉𝑓,𝑛) = (1− s𝑇 c𝑛)/c
𝑇
𝑛s

Var(𝑉𝑏,𝑛) = (1− s̃𝑇 c̃𝑛)/c̃
𝑇
𝑛 s̃.

When we assume ideal decision feedback, Pr(𝐼𝑓 = 0) =
Pr(𝐼𝑏 = 0) = 1 so that 𝐼𝑓,𝑛 = 𝐼𝑏,𝑛 = 0, the noise correlation
coefficient 𝜌𝑛 between 𝑉𝑓,𝑛 and 𝑉𝑏,𝑛 becomes

𝜌𝑛 ≜ E(𝑉𝑓,𝑛𝑉𝑏,𝑛)√
Var(𝑉𝑓,𝑛)Var(𝑉𝑏,𝑛)

=

E

[
𝐿𝑐∑
𝑗=0

𝑐{𝑛,𝑗}𝑤𝑛+𝑗

𝐿𝑐∑
𝑘=0

𝑐{𝑛,𝑘}𝑤𝑛−𝑘+𝐿ℎ−1

]
√
c𝑇𝑛s(1− s𝑇 c𝑛)

√
c̃𝑇𝑛 s̃(1− s̃𝑇 c̃𝑛)

(48)

=

𝐿𝑐∑
𝑗=0

𝐿𝑐∑
𝑘=0

𝑐{𝑛,𝑗}𝑐{𝑛,𝑘}E [𝑤𝑛+𝑗𝑤𝑛−𝑘+𝐿ℎ−1]√
c𝑇𝑛 s(1− s𝑇 c𝑛)

√
c̃𝑇𝑛 s̃(1 − s̃𝑇 c̃𝑛)

=𝑁0

⎛
⎜⎜⎜⎝

𝐿𝑐∑
𝑗=0

𝐿𝑐∑
𝑘=0

𝑐{𝑛,𝑗}𝑐{𝑛,𝑘}𝛿(𝑗 + 𝑘 + 1− 𝐿ℎ)√
c𝑇𝑛 s(1− s𝑇 c𝑛)

√
c̃𝑇𝑛 s̃(1 − s̃𝑇 c̃𝑛)

⎞
⎟⎟⎟⎠ (49)

where 𝛿(𝑡) is defined as: if 𝑡 = 0, 𝛿(𝑡) = 1; otherwise, 𝛿(𝑡) =
0. The equality in (48) holds because 𝑋𝑛 is an i.i.d random
variable.

If the time-invariant filters are used instead of the time-
varying filters, the variances of 𝑉𝑓,𝑛 and 𝑉𝑏,𝑛 become

Var(𝑉𝑓,𝑛) = c𝑇
(
HΣ𝑛H

𝑇 − 𝑧𝑛ss
𝑇 +𝑁0I

)
c/
(
c𝑇 s

)2
Var(𝑉𝑏,𝑛) = c̃𝑇

(
H̃Σ̃𝑛H̃

𝑇 − 𝑧𝑛s̃s̃
𝑇 +𝑁0I

)
c̃/
(
c̃𝑇 s̃

)2
.

Then, the noise correlation coefficient can be also obtained as
(50).

Now, let us consider some special cases.
1) No A Priori Information: When no a priori information

is available, i.e., E(𝑋𝑛) = 0 for all 𝑛, the feedforward and
feedback filters are the same as the time-invariant filters and
the noise variances are stationary:

Var(𝑉𝑓,𝑛) = Var(𝑉𝑓 ) = (1− s𝑇 c)/c𝑇 s

Var(𝑉𝑏,𝑛) = Var(𝑉𝑏) = (1− s̃𝑇 c̃)/c̃𝑇 s̃.

Therefore, the noise correlation coefficient is given by

𝜌𝑛 = 𝜌 = 𝑁0

⎛
⎜⎜⎜⎝

𝐿𝑐∑
𝑗=0

𝐿𝑐∑
𝑘=0

𝑐𝑗𝑐𝑘𝛿(𝑗 + 𝑘 + 1− 𝐿ℎ)√
c𝑇 s(1− s𝑇 c)

√
c̃𝑇 s̃(1− s̃𝑇 c̃)

⎞
⎟⎟⎟⎠ . (51)

We observed that the noise correlation coefficient of the
infinite-length BiDFE in (39) is almost identical to that of
the finite-length BiDFE in (51) when 𝐿𝑐 is chosen to be long
enough.

2) Time-varying Filters With Perfect A Priori Information:
When several iterations are performed at high SNRs in turbo
equalization, the perfect a priori information could be avail-
able, i.e., E(𝑋𝑛) = 𝑋𝑛 for all 𝑛. When E(𝑋𝑛) = 𝑋𝑛 for all
𝑛, the feedforward filters c𝑛 and c̃𝑛 of two DFEs become the
normalized matched filters corresponding to the forward and
reverse channel impulse responses:

c𝑛 =𝐴 [ℎ0, ℎ1, . . . , ℎ𝐿ℎ−1,01×𝐿𝑐−𝐿ℎ+1]
𝑇

c̃𝑛 =𝐴 [ℎ𝐿ℎ−1, ℎ𝐿ℎ−2, . . . , ℎ0,01×𝐿𝑐−𝐿ℎ+1]
𝑇

where 𝐴 is a real-valued constant depending on SNR, i.e.,
𝐴 ≜ 1/(𝑁0 +

∑𝐿ℎ−1
𝑘=0 ∣ℎ𝑘∣2). Moreover, since the first terms

of 𝑉𝑓,𝑛 and 𝑉𝑏,𝑛 disappear, the noise variances are simply:

Var(𝑉𝑓,𝑛) = Var(𝑉𝑓 ) =
𝑁0c

𝑇
𝑛c𝑛

(c𝑇𝑛 s)
2

=
𝑁0𝐴

2

(c𝑇𝑛 s)
2

𝐿ℎ−1∑
𝑘=0

∣ℎ𝑘∣2

Var(𝑉𝑏,𝑛) = Var(𝑉𝑏) =
𝑁0c̃

𝑇
𝑛 c̃𝑛

(c̃𝑇𝑛 s̃)
2

=
𝑁0𝐴

2

(c̃𝑇𝑛 s̃)
2

𝐿ℎ−1∑
𝑘=0

∣ℎ𝑘∣2.

Accordingly, the noise correlation coefficient is

𝜌𝑛 = 𝜌 = 1. (52)

Note that the noise correlation coefficient 𝜌 with perfect a
priori information converges to 1 regardless of the SNR value.
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𝜌=

∑{
(𝑌𝑓,𝑛 − �̂�𝑓,𝑛 − E(𝐼𝑓,𝑛))(𝑌𝑏,𝑛 − �̂�𝑏,𝑛 − E(𝐼𝑏,𝑛))

}
√∑

(𝑌𝑓,𝑛 − �̂�𝑓,𝑛 − E(𝐼𝑓,𝑛))2
√∑

(𝑌𝑏,𝑛 − �̂�𝑏,𝑛 − E(𝐼𝑏,𝑛))2
(47)

𝜌𝑛 =𝑁0

⎛
⎜⎜⎜⎝

𝐿𝑐∑
𝑗=0

𝐿𝑐∑
𝑘=0

𝑐𝑗𝑐𝑘𝛿(𝑗 + 𝑘 + 1− 𝐿ℎ)

√
c𝑇 (HΣ𝑛H𝑇 − 𝑧𝑛ss𝑇 +𝑁0I) c

√
c̃𝑇 (H̃Σ̃𝑛H̃𝑇 − 𝑧𝑛s̃s̃𝑇 +𝑁0I)c̃

⎞
⎟⎟⎟⎠ (50)

As will be shown shortly, the measured correlation coefficient
using simulated turbo BiDFE outputs indeed approaches 1, as
turbo iteration progresses. This indicates that both assumptions
- ideal decision feedback and perfect a priori information -
are reasonable.

3) Time-invariant Filters With Perfect A Priori Information:
When the time-invariant filters are used with perfect a priori
information, the time-invariant DFEs yield the noise variances
as

Var(𝑉𝑓,𝑛) = Var(𝑉𝑓 ) = 𝑁0c
𝑇 c/(c𝑇 s)2

Var(𝑉𝑏,𝑛) = Var(𝑉𝑏) = 𝑁0c̃
𝑇 c̃/(c̃𝑇 s̃)2.

The noise correlation coefficient is also simply given by

𝜌𝑛 = 𝜌 =

𝐿𝑐∑
𝑗=0

𝐿𝑐∑
𝑘=0

𝑐𝑗𝑐𝑘𝛿(𝑗 + 𝑘 + 1− 𝐿ℎ)

√
c𝑇 c

√
c̃𝑇 c̃

. (53)

As will be discussed in the next section, in the simulation
of turbo BiDFE with time-invariant taps it is observed that
the BiDFE output correlation does indeed converge to (53),
indicating again that the assumptions of error-free decisions
and perfect a priori information are reasonable.

VI. SIMULATION RESULTS

In this section, simulation results of several iterative equal-
ization schemes are presented. The transmitted symbols are
encoded with a recursive rate-1/2 convolutional code encoder
with parity generator (1 + 𝐷2)/(1 + 𝐷 + 𝐷2) with 211

message bits and are modulated by binary phase-shift keying
(BPSK) so that 𝑥𝑛 ∈ {±1}. We also assume that the noise
is AWGN, and the noise variance and the channel informa-
tion are perfectly known to the receiver. The ISI channels
with impulse responses h1 = (1/

√
19)[1 2 3 2 1]𝑇

and h2 = (1/
√
44)[1 2 3 4 3 2 1]𝑇 investigated

in [3] and [10] are used for evaluating the performance of
the iterative equalizers. These channels are considered very
severe ISI channels as the channel spectra possess nulls over
the Nyquist band, as shown in Fig. 3. Finally, the decoder
is implemented using the BCJR algorithm. Only the SISO
equalizer changes from one scheme to another. The MMSE-
DFE with 17 feedforward taps and 4 feedback taps is used
for both the normal and the time-reversed DFEs on h1 while
MMSE-DFE with 21 feedforward taps and 6 feedback taps is
used on h2. Finally, the linear MMSE equalizer uses 21 taps
for h1 and 27 taps for h2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−30

−25

−20

−15

−10

−5

0

5

Normalized Frequency (ω/2π)

A
m

pl
itu

de
 (

dB
)

h
2

h
1

Fig. 3. Frequency magnitude response of the ISI channels: h1 =
(1/

√
19)[1 2 3 2 1]𝑇 , h2 = (1/

√
44)[1 2 3 4 3 2 1]𝑇 .

Six different equalizer types are simulated in this work. The
notation “TV-" denotes equalizers with time-varying filters
while “TIV-" indicates those with time-invariant filters. For
instance, “TV-LE" in the legend indicates the linear MMSE
equalizer with a time-varying filter. The “Proposed DFE" uses
the proposed LLR mapping of (17) while “DFE" uses the
conventional LLR mapping (as used in [3]) The “Proposed
BiDFE" is the iterative BiDFE algorithm which is described
in Section V. In other words, “Proposed BiDFE" uses the
the proposed LLR generation for both normal and time-
reversed DFEs along with the proposed extrinsic information
combiner of (45) in conjunction with the noise correlation
coefficient of (47). The “BiDFE (mean combiner)" is the
iterative BiDFE algorithm with the conventional LLR mapping
and the mean combiner, 𝐿𝑒(𝑋) = (𝐿𝑒,𝑓 (𝑋)+𝐿𝑒,𝑏(𝑋))/2 (of
[9]), simulated for performance comparison purposes. Finally,
“MAP" is the optimal equalizer implemented via the BCJR
algorithm.

A thorough comparison is given in [3] on the required
complexity levels of the SISO-LE, SISO-DFE and the MAP
equalizers. The exact level of implementation complexity
is hard to assess as it depends highly on specific VLSI
architecture details. Roughly speaking, however, it is safe to
say that the number of multiplications and additions increases
as an exponential function of the channel memory length for
the MAP equalizer whereas the number of the same operations
is a quadratic function of both the channel memory length and
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Fig. 4. BER curve on the channel h1 after 20 iterations with time-varying
filters.

the filter length for the TV-LE and the TV-DFE, as shown in
[3]. The number of operations, on the other hand, increases
only linearly for the TIV-LE and the TIV-DFE [3]. The BiDFE
equalizers, including the proposed BiDFE methods, require
roughly twice as many operations as the DFE counterparts,
due to the presence of the time-reversed filter components.
Most notably, while the complexity of the proposed BiDFE
with time-invariant filters is considerably lower than that of
the MAP equalizer as well as the TV-LE, the performance is
significantly better than the TV-LE.

Fig. 4 shows the performance of several turbo equalizers
with time-varying filters after 20 iterations. TV-DFE with
the conventional LLR mapping shows poor performance but
once the proposed LLR generations are used (“Proposed TV-
DFE"), the DFE performance becomes clearly better than the
TV-LE method of [3], except at very high SNRs where all
schemes other than the conventional DFE perform comparably.
The “Proposed TV-BiDFE" is considerably better than the
TV-BiDFE based on the mean combiner, approaching the
performance of the MAP scheme.

Fig. 5 shows the BER performance of time-invariant-filter-
based turbo equalizers. As the figure indicates, the “Proposed
TIV-DFE" also shows superior performance to the “TIV-
DFE". The performance of “Proposed TIV-BiDFE" is very
close to the performance of the MAP equalizer while re-
quiring low computational complexity based on the use of
time-invariant filters. Also notice that both “Proposed TIV-
DFE" and “Proposed TIV-BiDFE" achieve decision-error-free
performance at low BERs, indicating the error propagation
effect has been nearly eliminated using the proposed LLR
generation method. It is noteworthy that the proposed BiDFE
algorithm still provides near-optimal performance even with
the time-invariant filter taps. While the TIV-BiDFE based on
the existing mean combiner appears to perform almost as well,
the EXIT chart analysis to be discussed below indicate that
with a smaller number of turbo iterations, its performance is
distinctly inferior to the proposed TIV-BiDFE based on the
new combining method.

Figs. 6 and 7 show a similar set of simulation results now
applied to the more severe ISI channel h2. While all DFE-
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Fig. 5. BER curve on the channel h1 after 20 iterations with time-invariant
filters.
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Fig. 6. BER curve on the channel h2 after 20 iterations with time-varying
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based schemes lag clearly behind the BCJR-based scheme at
the error rates simulated, the proposed BiDFE scheme in both
the time-varying and time-invariant filter cases outperform the
LE scheme by a significant margin. In fact, in this severe
channel the BER curve of the LE scheme, even with time-
varying filters, appears to diverge considerably from the ideal
no-ISI curve. Overall, the proposed BiDFE based on time-
invariant filter taps offer excellent performance-complexity
trade-off.

The noise correlation in one block of coded data bits is
described in Fig. 8, at different iteration numbers at a 6
dB SNR on h1. The correlation coefficient of “Proposed
TV-BiDFE" goes to 1 as the number of iterations increases
because the a priori information from the decoder becomes
reliable, and the time-varying filters in the normal and the
time-reversed DFEs produce essentially the same equalized
output sequences. This phenomenon of Fig. 8 validates (52).
On the other hand, the correlation coefficient of “Proposed
TIV-BiDFE" actually decreases as the number of iterations
increases, and the noise correlation coefficient converges to
that of “TIV-BiDFE with Ideal Feedback" or the correlation
coefficient of (53). This is because the decision feedback errors
disappear and the perfect a priori information is available from
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decoder. Note that the filter coefficients in both DFEs do not
change with the a priori information.

In general, it is quite difficult to analyse the iterative
equalization and decoding schemes. We rely on the oft-
used extrinsic information transfer (EXIT) chart of [15] to
develop insights into the convergence behaviour of the turbo
equalizers. The EXIT chart is a diagram demonstrating the
mutual information (MI) transfer characteristics of the two
constituent modules which exchange soft information. In the
EXIT charts, the behavior of the channel equalizer is described
with its input and output on the horizontal and vertical axis,
respectively, while the behavior of the decoder is described
in opposite way. The pair of EXIT chart curves typically
defines a path for the MI trajectory to move up during iterative
processing of soft information. The number of stairs that a
given MI trajectory takes to reach the highest value indicates
the necessary number of iterations toward convergence.

Figs. 9 and 11 show the EXIT chart corresponding to
time-varying-filter-based equalizers for h1 at a 6 dB SNR
and h2 at a 10 dB SNR while Figs. 10 and 12 show the
similar EXIT charts for time-invariant-filter-based schemes.
Although not shown here to avoid excessive cluttering, the
trajectories of “TV-DFE" and “TIV-DFE" move up for the
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Fig. 9. EXIT chart on the channel h1 at a 6 dB with time-varying filters.
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Fig. 10. EXIT chart on the channel h1 at a 6 dB with time-invariant filters.

first couple of iterations, but then quickly fizzle out due to
the inadequate extrinsic LLR generations that cannot handle
error propagation. However, the trajectories of “Proposed
TV-DFE" and “Proposed TIV-DFE" keep moving up as the
number of iterations increases, clearly indicating the advantage
and effectiveness of the proposed LLR generation method.
However, the trajectory of “Proposed TIV-DFE" at 6 dB or 10
dB does not reach the maximum possible value since the filters
do not fully exploit the a priori information from the decoder.
The trajectories of the “Proposed TV-BiDFE" and “Proposed
TIV-BiDFE" indicate that these schemes move from 0 bit of
mutual information to 1 bit with a less number of iteration runs
than “Proposed TV-DFE", “Proposed TIV-DFE", “TV-LE", or
“TIV-LE".

We notice, however, that the proposed BiDFE scheme
requires more iterations in achieving the full performance,
relative to the MAP equalizer (whose trajectory is not shown
to avoid cluttering). Nevertheless, the proposed BiDFE method
offers a reasonable tradeoff among complexity, performance,
and latency.

Finally, Fig. 13 shows the SNR comparison at the output of
the unbiased DFE and BiDFE assuming ideal feedback on the
channel h1 when the a priori information is not available. As
the figure shows, the output SNR of BiDFE is considerably
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Fig. 12. EXIT chart on the channel h2 at a 10 dB with time-invariant filters.

higher than the output SNR of DFE but with a certain gap to
the matched filter bound (MFB).

VII. CONCLUSION

In this paper, we proposed new SISO DFE and BiDFE
structures well-suited to turbo equalization. The proposed
LLR generation designed to reduce error propagation indeed
provides decision-error-free performance in the DFE in turbo
equalizer setting. When further employing an LLR combining
method that estimates the correlation between the forward
and backward DFE outputs and whitens them, the resulting
performance is remarkably good given the simple structure
of the BiDFE, relative to that of the BCJR equalizer. The
proposed LLR generation and combining methods remain
effective even when a time-invariance constraint is imposed
on the feedforward and feedback filters of the DFEs. Overall,
the proposed BiDFE method based on time-invariant filter
taps provides the excellent performance-complexity tradeoff
for severe ISI channels where the linear SISO equalizer fails
to operate adequately.
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